skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Delor, Milan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available December 18, 2025
  3. Ultraclean graphene at charge neutrality hosts a quantum critical Dirac fluid of interacting electrons and holes. Interactions profoundly affect the charge dynamics of graphene, which is encoded in the properties of its electron-photon collective modes: surface plasmon polaritons (SPPs). Here, we show that polaritonic interference patterns are particularly well suited to unveil the interactions in Dirac fluids by tracking polaritonic interference in time at temporal scales commensurate with the electronic scattering. Spacetime SPP interference patterns recorded in terahertz (THz) frequency range provided unobstructed readouts of the group velocity and lifetime of polariton that can be directly mapped onto the electronic spectral weight and the relaxation rate. Our data uncovered prominent departures of the electron dynamics from the predictions of the conventional Fermi-liquid theory. The deviations are particularly strong when the densities of electrons and holes are approximately equal. The proposed spacetime imaging methodology can be broadly applied to probe the electrodynamics of quantum materials. 
    more » « less
  4. The transport of energy and information in semiconductors is limited by scattering between electronic carriers and lattice phonons, resulting in diffusive and lossy transport that curtails all semiconductor technologies. Using Re6Se8Cl2, a van der Waals (vdW) superatomic semiconductor, we demonstrate the formation of acoustic exciton-polarons, an electronic quasiparticle shielded from phonon scattering. We directly imaged polaron transport in Re6Se8Cl2at room temperature, revealing quasi-ballistic, wavelike propagation sustained for a nanosecond and several micrometers. Shielded polaron transport leads to electronic energy propagation lengths orders of magnitude greater than in other vdW semiconductors, exceeding even silicon over a nanosecond. We propose that, counterintuitively, quasi-flat electronic bands and strong exciton–acoustic phonon coupling are together responsible for the transport properties of Re6Se8Cl2, establishing a path to ballistic room-temperature semiconductors. 
    more » « less
  5. Abstract In this manuscript, we report the first demonstration of controlled helicity in extended graphene nanoribbons (GNRs). We present a wealth of new graphene nanoribbons that are a direct consequence of the high‐yielding and robust synthetic method revealed in this study. We created a series of defect‐free, ultralong, chiral cove‐edged graphene nanoribbons where helical twisting of the graphene nanoribbon backbone is tuned through functionalization with chiral side chains.S‐configured point chiral centers in the side chains transfer their chiral information to induce a helically chiral, right‐handed twist in the graphene nanoribbon. As the backbone is extended, these helically twisted graphene nanoribbons exhibit a substantial increase in their circular dichroic response. The longest variant synthesized consists of an average of 268 linearly fused rings, reaching 65 nm in average length with nearly 10 full end‐to‐end helical rotations. The structure exhibits an extraordinary |Δε| value of 6780 M−1cm−1at 550 nm—the highest recorded for an organic molecule in the visible wavelength range. This new chiroptic material acts as room‐temperature spin filters in thin films due to its chirality‐induced spin selectivity. 
    more » « less
  6. Abstract Semiconductor excitations can hybridize with cavity photons to form exciton-polaritons (EPs) with remarkable properties, including light-like energy flow combined with matter-like interactions. To fully harness these properties, EPs must retain ballistic, coherent transport despite matter-mediated interactions with lattice phonons. Here we develop a nonlinear momentum-resolved optical approach that directly images EPs in real space on femtosecond scales in a range of polaritonic architectures. We focus our analysis on EP propagation in layered halide perovskite microcavities. We reveal that EP–phonon interactions lead to a large renormalization of EP velocities at high excitonic fractions at room temperature. Despite these strong EP–phonon interactions, ballistic transport is maintained for up to half-exciton EPs, in agreement with quantum simulations of dynamic disorder shielding through light-matter hybridization. Above 50% excitonic character, rapid decoherence leads to diffusive transport. Our work provides a general framework to precisely balance EP coherence, velocity, and nonlinear interactions. 
    more » « less